
JOURNAL OF COMPUTATIONAL PHYSICS 101,287~291 (1992) 

Generalizations of Davidson’s Method for Computing 
Eigenvalues of Large Nonsymmetric Matrices 

RONALD B. MORGAN 

Department of Mathematics, Baylor University, Waco, Texas 76798 

Received March 25, 1988; revised August 29, 1991 

Davidson’s method for nonsymmetric eigenvalue problems is 
examined. Some analysis is given for why Davidson’s method is effec- 
tive. An implementation is given that avoids use of complex arithmetic. 
This reduces the expense if complex eigenvalues are computed. Also 
discussed is a generalization of Davidson’s method that applies the pre- 
conditioning techniques developed for systems of linear equations to 
nonsymmetric eigenvalue problems. Convergence can be rapid if there 
is an approximation to the matrix that is both factorable and fairly 
accurate. 0 1992 Academac Press, Inc. 

I. INTRODUCTION 

Finding eigenvalues of a large nonsymmetric matrix is 
often a difficult task. We examine the use of Davidson’s 
method [ 1 ] and other preconditioning methods for this 
problem. This section reviews methods for the symmetric 
eigenvalue problem. Section 2 briefly discusses nonsym- 
metric Davidson’s method and shows that the method is 
effective under certain conditions. Section 3 looks at an 
implementation of nonsymmetric Davidson’s method that 
avoids complex vectors. Section 4 discusses generalizing 
Davidson’s method for more powerful preconditioning. 

For a large symmetric eigenvalue problem 

AZ = l.z, 

the Lanczos algorithm [2] is a well known method. Given 
a starting vector x, this method generates a Krylov 
subspace, Span{ x, Ax, A’x, . . . . A’- ‘x}. Then the 
Rayleigh-Ritz procedure [2] is used to extract approximate 
eigenpairs from the subspace. The Rayleigh-Ritz procedure 
requires an orthonormal basis for the subspace, but the 
Lanczos algorithm uses a three-term recurrence that saves 
on orthogonalization costs. The convergence of this method 
is rapid if the desired eigenvalues are well separated from the 
rest of the spectrum, especially if they are on the exterior of 
the spectrum. Another popular method is subspace iteration 
[23, but it is generally not as powerful as the Lanczos 

algorithm [2,3]. However, both of these methods have 
difficulty with problems that have poorly separated eigen- 
values. Use of a shifted-and-inverted operator (A - al) ~ ’ 
changes the distribution of eigenvalues and improves con- 
vergence for eigenvalues near (T [4, 51. The factorization 
required for implementing the inverted operator is often 
expensive, and we do not consider this option. 

Another way to improve the distribution of eigenvalues is 
with Davidson’s method. Davidson’s method also uses the 
Rayleigh-Ritz procedure, but the subspace is generated by 
the operator (D - BZ) -’ (A - f3Z), where D is the diagonal of 
A and 0 is the most recent approximate eigenvalue. To 
explain the effectiveness of Davidson’s method, suppose 
that 0 converges to the eigenvalue 2 with associated eigen- 
vector z. Then the operator in Davidson’s method converges 
to N c (D - E,Z) ~ ’ (A - AZ). So we can view Davidson’s 
method as being asymptotically related to the Lanczos 
method, but with N generating the subspace instead of A. 
Davidson’s method is effective because N often has a better 
distribution of eigenvalues than A. Note N has one eigen- 
value at 0 and the associated eigenvector is z. Ideally this 
zero eigenvalue tends to be well separated from the rest of 
the spectrum. The idea is that (D - ,?I)- ’ is an approximate 
inverse for (A - AZ) ~ ‘, so most of N’s eigenvalues are 
pushed toward 1. The separation of the eigenvalue at 0 
causes convergence to be rapid toward the eigenvector z. 
This can be viewed as using diagonal preconditioning. See 
[6] for more details. 

Davidson’s Method 

Let fi, . . . . fk be vectors spanning the initial subspace and 
let Q be an n by k orthonormal matrix with columns 
spanning the subspace. 

Iterate forj = k, k + 1, . . . 

1. Form H = Q’AQ. 

2. Find the appropriate eigenpair of H, say (0, g), and 
let y = Qg. 
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3. Form the residual vector Y = (A - 0Z)y, and check 
ilrll for convergence. 

4. LetJ;, , = (D - 0Z)) ’ r, where D is the diagonal of A. 

5. Orthonormalizef , + , against the previous columns of 
Q and append as the (j + 1) th column. 

The size of Q and H increases as the algorithm proceeds. 
The method can be restarted if the orthogonalization cost 
for Q becomes too great. The approximate eigenpair of A is 
(0, JJ). See [7] for a discussion of how to choose 8 from 
among the eigenvalues of H. See [S] and [9] for 
approaches if interior eigenvalues are desired. 

Davidson’s method converges much faster than the 
Lanczos algorithm for some problems [ 11. The expense per 
iteration of the method is greater than for the Lanczos algo- 
rithm, because full orthogonalization is needed. But when 
the matrix-vector product with A is the main expense, any 
reduction in the number of iterations is important. Both 
methods can be implemented with one matrix-vector 
product per iteration. 

Davidson’s method is generally effective when the 
diagonal is a good approximation to the whole matrix. The 
method was generalized in [6] to allow for other precondi- 
tioners. Replace step 4, with J;+ , = (M - 6Z) ~ ’ r, where M 
is any approximation to A. In this way, the preconditioners 
developed for solving systems of linear equations with the 
conjugate gradient method [l&12] can be applied to 
eigenvalue problems. This approach provides a compromise 
between standard Lanczos with possibly slow convergence 
and shift-and-invert Lanczos [4, 51 with great factorization 
expense. The approximate factorization used to implement 
(M- 0Z) ~ I can generally be less expensive, yet still give 
power to the method. This approach is referred to as the 
GD method (generalized Davidson’s) or as a precondition- 
ing method. It can also be applied to generalized eigenvalue 
problems [ 131. For particularly sparse matrices, there is an 
approach that avoids the full orthogonalization [ 141. 

II. DAVIDSON’S METHOD FOR 
NONSYMMETRIC MATRICES 

Now we consider nonsymmetric problems. The sym- 
metric Lanczos algorithm can be generalized in two ways. 
One way is the nonsymmetric Lanczos algorithm [15] 
which also has a three-term recurrence, but is not popular 
because of instability. The other way is the Arnoldi algo- 
rithm [ 16, 171. Arnoldi also generates a Krylov subspace 
but it uses full orthogonalization, so the expense and 
storage requirements are greater than for symmetric 
Lanczos. 

Meanwhile Davidson’s method can be generalized to 
nonsymmetric problems relatively easily [ 18, 191. It can be 
implemented with the same algorithm as given earlier. The 
only difference is that complex numbers may appear (see the 

next section). Since Davidson’s method already required full 
orthogonalization, it is generally even more competitive 
with Krylov subspace methods in the nonsymmetric case. 

The discussion in the previous section for why Davidson’s 
method is effective also holds in the nonsymmetric case. 
Note that the operator N = (D - ,!I) ’ (A - i-l) is generally 
nonsymmetric even with a symmetric matrix .4. Effective 
results have been reported for nonsymmetric Davidson’s 
method 118, 191. The following theorem shows why 
Davidson’s method is effective when A has large and well 
separated diagonal elements. In this situation, N is close to 
a matrix with all of its eigenvalues at 1. For notation. the 
standard 2-norms is I/ ‘11, and the infinity norm is I! , 

THEOREM 1. Let A = D + F, where D is the diagonal oj’A 
and F is the qff-diagonal portion. Let j. he an eigenvalue 
of A, and akk he the diagonal element of A closest to i,. Let 
?/ = minlZk lakk -ailI. Assume that IlFll J < ~12. Then 
N = P + E, where P has all qf its eigenvalues at 1, and where 
IIEII < 2 IlFlllr. 

ProoJ Note N = I+ (D - U) ’ F. Let P be the portion 
of N with its diagonal and its kth row, and let E have the 
rest of N. Interchanging the first and kth rows and columns 
of P is a similarity transformation, and it yields an upper 
triangular matrix with all l’s on the diagonal. So all of P’s 
eigenvalues are 1. Meanwhile E = ((D - 1-Z) ’ }‘F. where 
the prime indicates that the kth row is removed. The 
assumption that II FII oj < y/2 says that the gap between akk 
and the other diagonal elements is twice as large as the 
maximum sum of absolute values of off-diagonal elements 
in a row. Using Gerschgorin bounds, 1. is within y/2 of akk. 
So for i # k, l/1- a, / > y/2. Therefore 

lIEI = II ((D - 21) ’ )‘FIl 
G IIW-~T’)‘ll IIFII 

<2 IlFIl 

As discussed earlier, asymptotic convergence of 
Davidson’s method is controlled by the distribution of the 
eigenvalues of N. We want most of the eigenvalues of N to 
be clustered around 1. If the diagonal elements of A are 
extremely well spaced from akk, then the theorem says that 
llE[l is small, so N is close to a matrix with all of its 
eigenvalues at 1. This does not guarantee that all of hrs 
eigenvalues are near 1. In fact, we know that one is at 0. 
But in some testing with matrices satisfying the conditions, 
all but two or three eigenvalues of N were close to 1. This 
indicates that convergence will be rapid toward the desired 
eigenvector. 

A theorem on the convergence rate would probably be 
difficult. But if we assume that 8 is close enough to 1 so that 
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we can ignore the difference between them in generating 
the subspace, then it is possible to show that only a couple 
steps of Davidson’s method are required to improve a 
fairly accurate approximate eigenvector. Decompose the 
approximate eigenvector as y = c(z + t, where t is assumed to 
be small. Note P = Z+ ekvT, where ek is the kth coordinate 
vector and u is some vector. After one step of Davidson’s 
method, the vector y - NV is in the subspace. We compute 

Ny = Nt, since (0, z) is an eigenpair of N 

=Pt+Et 

=t+fle,+Et, for /j=u’t. 

Therefore 

y-Ny=ctz-Be,--Et. 

Another step of Davidson’s method will produce another 
vector of similar form. Then normally the Rayleigh-Ritz 
procedure will combine the vectors in such a way as to 
mostly eliminate the unwanted vector ek. This produces a 
more accurate approximate eigenvector with only small 
error terms like Et. 

Theorem 1 requires rather strong conditions to be 
meaningful. One possible improvement is to assume that ukk 
is well separated from only n-m of the other diagonal 
elements of A. Then the theorem can be restated with the 
conclusion that n - m of the eigenvalues of P are equal to 1. 
This still indicates good convergence after a few steps, if m 
is small and IlEll is small. For this we need most of the 
diagonal elements of A to be well spaced from akk, relative 
to the size of the off-diagonal elements. 

III. IMPLEMENTATION FOR COMPLEX EIGENVALUES 

The major change in Davidson’s method for the nonsym- 
metric case is that H may have complex eigenvalues. If 0 is 
complex, then Q and H become complex. This complicates 
the implementation and increases the expense. The matrix- 
vector product takes twice as many real operations and the 
orthogonalization for Q requires four times as many. By 
comparison, the major computations in the Arnoldi method 
remain real [ 16, 173. 

We investigate an approach that keeps Q real in 
Davidson’s method. If f, + 1 is complex, it is split into two 
real vectors from its real and imaginary parts. These two 
vectors are both used as new vectors for the subspace. They 
are orthonormalized and appended as new columns of Q. 
There is no disadvantage in separating the two parts, since 
the Rayleigh-Ritz procedure combines the columns of Q. 
The separation actually allows for more flexibility, because 
with more vectors, there are more ways to combine them. It 
is necessary to add both the real and imaginary parts. 

Otherwise the theory in the previous two sections for 
Davidson’s method will not hold, and we can not expect 
good convergence. 

If a combination of real and complex eigenvalues is com- 
puted, this splitting approach is definitely better, because Q, 
ff, andfi,, are real even after a complex value of 8 has 
occurred. Then computing a real eigenvalue is less expensive 
since only one real vector is added per iteration. 

EXAMPLE 1. As a test matrix, we choose the matrix of 
dimension 1000 that is tridiagonal except for the first and 
last rows and columns. The main diagonal has elements 
going from 1 to 1000, the superdiagonal has - l’s, the sub- 
diagonal has l’s, and the first and last rows and columns 
have 0.1’s, except where they intersect the tridiagonal 
portion. We compute the five eigenvalues with smallest real 
parts. They are the complex conjugate pair 1.832 f 0.828i 
and the real values 3.527,3.720, and 5.042. The convergence 
criteria is the residual norm dropping below 10-l’. The 
initial vectors are the first live coordinate vectors. To keep 
Q close to orthonormal in spite of roundoff error, a vector 
is reorthogonalized if its norm drops by over 90% during 
the orthogonalization (in step 5). The computations are 
performed on an IBM 4381-R14 using double precision. 

Table I gives a comparison between the implementation 
with complex vectors and the implementation that splits the 
vectors. A complex vector is counted as adding 1 dimension 
and 1 iteration, but 2 matrix-vector products. Splitting the 
vector is counted as adding 2 in dimension, 1 iteration, and 
2 matrix-vector products. The initial vectors are counted as 
1 of each. We see that while the dimension of the subspace 
increases slightly with the splitting approach, the total 
number of matrix-vector products is reduced from 65 to 37. 

If only complex eigenvalues are computed, the expense 
per iteration for the splitting approach is approximately the 
same as without splitting. Two matrix-vector products are 
needed for each iteration, and orthogonalization costs are 
four times as great as in the symmetric case, because two 
vectors are orthogonalized against twice as many previous 
vectors. However, it turns out that splitting can reduce the 
number of iterations and be cheaper. 

TABLE I 

Comparison of Two Implementations 

Dimension 
Mvp’s 
Iterations 
CPU time 

Example 1 Example 2 

Complex Split Complex Split 

35 31 31 39 
65 37 51 39 
35 28 31 22 
35.5 14.2 26.8 13.9 
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EXAMPLE 2. The matrix is the same as in example 1 
except that the superdiagonal elements are -2 instead of 
- 1. The six eigenvalues with smallest real parts are 
computed. These are three complex conjugate pairs. Table I 
again has the results. Splitting the vectors reduces the 
number of iterations from 31 to 22, so less matrix-vector 
products are needed (39 instead of 57). It is perhaps surpris- 
ing that there is such a difference in this case. This difference 
results from the Rayleigh-Ritz procedure having greater 
flexibility in combining the split vectors. 

IV. GD FOR NONSYMMETRIC MATRICES 

The matrices in Examples 1 and 2 are well suited to 
Davidson’s method because the diagonal elements are 
relatively large and well spaced. But in many problems, the 
diagonal of the matrix is not such a good approximation to 
the whole matrix. If there is a better approximation, say M, 
then M should be used in place of D. This is the GD method 
[6] applied to nonsymmetric matrices. M- 61 is a 
preconditioner for A - 81. Solution of linear equations 
in A4 - 81 should be fairly inexpensive. 

Theorem 1 can be generalized for this situation. Under 
the right conditions, N is again close to a matrix with all of 
its eigenvalues at 1. 

THEOREM 2. Let A = M+ F, where M has spectral 
decomposition M = U ~ 1 AU. Let 1 be an eigenvalue of A, 
and 6, be the eigenvalue of M closest to 3.. Let y = 
minrZk 16, - a,/. Assume that II U -‘FUII cl, d y/2. Define 
NE (M-E-Z)-’ (A-E,Z). Then N= P+E, where P is a 
matrix with all qf its eigenvalues at 1, and 
IIEII < 2 II UII II U -’ II II~WY. 

Proof: Multiplying N on the front and back by U ’ 
and U, respectively, is a similarity transformation. This 
produces the matrix (A -AZ)-’ U-‘(M- %Z+ F) U= 
Z+ (A - AZ)) ’ U -- ‘FU. Separate the kth row of 
(A - AZ) - ’ U ~ i FU and append it to Z and call this U ~ 1 PU. 
Then the proof is similar to that for Theorem 1. All of P’s 
eigenvalues are 1. Again using the prime to denote that the 
kth row has been deleted, 

and 

E=U(A-II)-‘}’ U-‘F, 

,lEl, < 2 II UII II U -’ II IIFII 
Y . 

From this theorem, it appears that M will be a 
worthwhile choice.as a preconditioner if it has eigenvalues 
that are well separated relative to the size of the rest of A. If 
possible, we would like for M to contain the portion of A 
with the larger elements. And hopefully there is some variety 
in the sizes of the eigenvalues of M. 

TABLE II 

Several Methods and Use of Real( 0) 

Method Use H No. mvp’s 

Arnoldi 350+ 
Davidson 37 
GD,M=T 16 

Use Real(O) No. mvp’s 

33 
22 

EXAMPLE 3. Although the diagonal preconditioning in 
Davidson’s method is effective for the matrix in Example 1, 
tridiagonal preconditioning is even better. Table II gives the 
number of matrix-vector products required to find the first 
five eigenvalues with diagonal and tridiagonal precondi- 
tioning. Tridiagonal preconditioning takes only 16 matrix- 
vector products. Results are also given for the Arnoldi 
method with restarting every 100 iterations, but only one 
eigenvalue is computed and this requires 350 matrix-vector 
products. Using preconditioning is very important for this 
matrix. 

A complex value of 0 can significantly increase the 
expense of factoring M - 61. In some cases, it is sufficient to 
use only the real part of 0 in the factorization. Note M- 01 
is only an approximation to A - 0Zanyway. See Table II for 
results with only the real part of 0 being used in the pre- 
conditioner (all of 0 is used in forming the residual vector in 
step 3). Davidson’s method actually improves with just the 
real part. However, GD with M= T slows down a little. 
Because M= T is such a good approximation to A, the 
difference between 0 and Real(B) is significant. Another 
worthwhile point is that in order to save on factorization 
expense, it may be desirable to only factor one time. We can 
use M - CTZ, with a fixed CJ, in place of M - 01 (see [ 61). 

IV. CONCLUSION 

Nonsymmetric Davidson’s method is particularly effec- 
tive if the matrix has diagonal elements that are large and 
well separated relative to the size of the off-diagonal 
elements. Some theoretical justification is given for why the 
method is effective in this case. This is done by relating 
the asymptotic convergence of Davidson’s method to the 
convergence of the Lanczos algorithm applied to the 
preconditioned matrix N. 

An implementation of nonsymmetric Davidson’s method 
that avoids using complex vectors is also given. New vectors 
are split into their real and imaginary parts and added 
separately to the subspace. This can reduce the number of 
iterations needed for convergence, because the Rayleigh- 
Ritz procedure has more freedom to combine the separated 
vectors. 

The more powerful preconditioning of the GD method 
can improve the convergence for some matrices. This makes 
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these methods applicable to more types of problems. For 
GD to be successful, a preconditioner is needed that is fairly 
inexpensive to implement and yet is a good approximation 
to the matrix. 
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